Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Comput Part Mech ; 8(4): 737-749, 2021.
Article in English | MEDLINE | ID: covidwho-935342

ABSTRACT

Coronavirus causes some illnesses to include cold, COVID-19, MERS, and SARS. This virus can be transmitted through contact with different atomic matrix between humans. So, this atomic is essential in medical cases. In this work, we describe the atomic manner of this virus in contact with various metallic matrix such as Fe, Al, and steel with equilibrium molecular dynamic method. For this purpose, we reported physical properties such as temperature, total energy, distance and angle of structures, mutual energy, and volume variation of coronavirus. In this approach, coronavirus is precisely simulated by O, C, S, and N atoms and they are implemented dreiding force field. Our simulation shows that virus interaction with steel matrix causes the maximum removing of the virus from the surfaces. After 1 ns, the atomic distance between these two structures increases from 45 to 75 Å. Furthermore, the volume of coronavirus 14.62% increases after interaction with steel matrix. This atomic manner shows that coronavirus removes and destroyed with steel surface, and this metallic structure can be a promising material for use in medical applications.

2.
Infect Genet Evol ; 85: 104422, 2020 11.
Article in English | MEDLINE | ID: covidwho-597100

ABSTRACT

Extracellular vesicles releasing from various types of cells contribute to intercellular communication via delivering bio-molecules like nucleic acids, proteins, and lipids to recipient cells. Exosomes are 30-120 nm extracellular vesicles that participate in several pathological conditions. Virus-infected cells release exosomes that are implicated in infection through transferring viral components such as viral-derived miRNAs and proteins. As well, exosomes contain receptors for viruses that make recipient cells susceptible to virus entry. Since December 2019, SARS-CoV-2 (COVID-19) infection has become a worldwide urgent public health concern. There is currently no vaccine or specific antiviral treatment existing for COVID-19 virus infection. Hence, it is critical to find a safe and effective therapeutic tool to patients with severe COVID-19 virus infection. Extracellular vesicles may contribute to spread this virus as they transfer such receptors as CD9 and ACE2, which make recipient cells susceptible to virus docking. Upon entry, COVID-19 virus may be directed into the exosomal pathway, and its component is packaged into exosomes for secretion. Exosome-based strategies for the treatment of COVID-19 virus infection may include following items: inhibition of exosome biogenesis and uptake, exosome-therapy, exosome-based drug delivery system, and exosome-based vaccine. Mesenchymal stem cells can suppress nonproductive inflammation and improve/repair lung cells including endothelial and alveolar cells, which damaged by COVID-19 virus infection. Understanding molecular mechanisms behind extracellular vesicles related COVID-19 virus infection may provide us with an avenue to identify its entry, replication, spreading, and infection to overcome its adverse effects.


Subject(s)
COVID-19/virology , Extracellular Vesicles/genetics , Extracellular Vesicles/metabolism , SARS-CoV-2/pathogenicity , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Extracellular Vesicles/drug effects , Humans , Molecular Targeted Therapy , SARS-CoV-2/drug effects , Signal Transduction/drug effects , Virus Internalization/drug effects , Virus Shedding/drug effects , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL